Fork me on GitHub

Daily PyTrick

2018-3-28

# How to merge two dictionaries
# in Python 3.5+

>>> x = {'a': 1, 'b': 2}
>>> y = {'b': 3, 'c': 4}

>>> z = {**x, **y}

>>> z
{'c': 4, 'a': 1, 'b': 3}

# In Python 2.x you could
# use this:
>>> z = dict(x, **y)
>>> z
{'a': 1, 'c': 4, 'b': 3}

# In these examples, Python merges dictionary keys
# in the order listed in the expression, overwriting 
# duplicates from left to right.

2018-3-29

# Different ways to test multiple
# flags at once in Python
x, y, z = 0, 1, 0

if x == 1 or y == 1 or z == 1:
    print('passed')

if 1 in (x, y, z):
    print('passed')

# These only test for truthiness:
if x or y or z:
    print('passed')

if any((x, y, z)):
    print('passed')

2018-3-30

# How to sort a Python dict by value
# (== get a representation sorted by value)

>>> xs = {'a': 4, 'b': 3, 'c': 2, 'd': 1}

>>> sorted(xs.items(), key=lambda x: x[1])
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

# Or:

>>> import operator
>>> sorted(xs.items(), key=operator.itemgetter(1))
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

2018-4-2

# The get() method on dicts
# and its "default" argument

name_for_userid = {
    382: "Alice",
    590: "Bob",
    951: "Dilbert",
}

def greeting(userid):
    return "Hi %s!" % name_for_userid.get(userid, "there")

>>> greeting(382)
"Hi Alice!"

>>> greeting(333333)
"Hi there!"

2018-4-4

# Why Python is Great: Namedtuples
# Using namedtuple is way shorter than
# defining a class manually:
>>> from collections import namedtuple
>>> Car = namedtuple('Car', 'color mileage')

# Our new "Car" class works as expected:
>>> my_car = Car('red', 3812.4)
>>> my_car.color
'red'
>>> my_car.mileage
3812.4

# We get a nice string repr for free:
>>> my_car
Car(color='red' , mileage=3812.4)

# Like tuples, namedtuples are immutable:
>>> my_car.color = 'blue'
AttributeError: "can't set attribute"

2018-4-7

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

2018-4-10

# The standard string repr for dicts is hard to read:
>>> my_mapping = {'a': 23, 'b': 42, 'c': 0xc0ffee}
>>> my_mapping
{'b': 42, 'c': 12648430. 'a': 23}  # 😞

# The "json" module can do a much better job:
>>> import json
>>> print(json.dumps(my_mapping, indent=4, sort_keys=True))
{
    "a": 23,
    "b": 42,
    "c": 12648430
}

# Note this only works with dicts containing
# primitive types (check out the "pprint" module):
>>> json.dumps({all: 'yup'})
TypeError: keys must be a string

2018-04-11

# Why Python Is Great:
# Function argument unpacking

def myfunc(x, y, z):
    print(x, y, z)

tuple_vec = (1, 0, 1)
dict_vec = {'x': 1, 'y': 0, 'z': 1}

>>> myfunc(*tuple_vec)
1, 0, 1

>>> myfunc(**dict_vec)
1, 0, 1

2018-4-16

# The "timeit" module lets you measure the execution
# time of small bits of Python code

>>> import timeit
>>> timeit.timeit('"-".join(str(n) for n in range(100))',
                  number=10000)

0.3412662749997253

>>> timeit.timeit('"-".join([str(n) for n in range(100)])',
                  number=10000)

0.2996307989997149

>>> timeit.timeit('"-".join(map(str, range(100)))',
                  number=10000)

0.24581470699922647

2018-4-19

# Why Python Is Great:
# In-place value swapping

# Let's say we want to swap
# the values of a and b...
a = 23
b = 42

# The "classic" way to do it
# with a temporary variable:
tmp = a
a = b
b = tmp

# Python also lets us
# use this short-hand:
a, b = b, a

2018-5-7

# Python has a HTTP server built into the
# standard library. This is super handy for
# previewing websites.

# Python 3.x
$ python3 -m http.server

# Python 2.x
$ python -m SimpleHTTPServer 8000

# (This will serve the current directory at
#  http://localhost:8000)

2018-5-7

# Because Python has first-class functions they can
# be used to emulate switch/case statements

def dispatch_if(operator, x, y):
    if operator == 'add':
        return x + y
    elif operator == 'sub':
        return x - y
    elif operator == 'mul':
        return x * y
    elif operator == 'div':
        return x / y
    else:
        return None


def dispatch_dict(operator, x, y):
    return {
        'add': lambda: x + y,
        'sub': lambda: x - y,
        'mul': lambda: x * y,
        'div': lambda: x / y,
    }.get(operator, lambda: None)()


>>> dispatch_if('mul', 2, 8)
16

>>> dispatch_dict('mul', 2, 8)
16

>>> dispatch_if('unknown', 2, 8)
None

>>> dispatch_dict('unknown', 2, 8)
None

2018-5-7

# Functions are first-class citizens in Python.

# They can be passed as arguments to other functions,
# returned as values from other functions, and
# assigned to variables and stored in data structures.

>>> def myfunc(a, b):
...     return a + b
...
>>> funcs = [myfunc]
>>> funcs[0]
<function myfunc at 0x107012230>
>>> funcs[0](2, 3)
5

2018-5-7

# "is" vs "=="

>>> a = [1, 2, 3]
>>> b = a

>>> a is b
True
>>> a == b
True

>>> c = list(a)

>>> a == c
True
>>> a is c
False

# • "is" expressions evaluate to True if two 
#   variables point to the same object

# • "==" evaluates to True if the objects 
#   referred to by the variables are equal

2018-05-18

# Python's list comprehensions are awesome.

vals = [expression 
        for value in collection 
        if condition]

# This is equivalent to:

vals = []
for value in collection:
    if condition:
        vals.append(expression)

# Example:

>>> even_squares = [x * x for x in range(10) if not x % 2]
>>> even_squares
[0, 4, 16, 36, 64]

2018-05-19

# 'type annotation'不改变Python运行时,但可以在开发程序时用其他第三方工具进行类型检查。
# Python 3.5+ supports 'type annotations' that can be
# used with tools like Mypy to write statically typed Python:

def my_add(a: int, b: int) -> int:
    return a + b

2018-05-20

# Python's list slice syntax can be used without indices
# for a few fun and useful things:

# You can clear all elements from a list:
>>> lst = [1, 2, 3, 4, 5]
>>> del lst[:]
>>> lst
[]

# You can replace all elements of a list
# without creating a new list object:
>>> a = lst
>>> lst[:] = [7, 8, 9]
>>> lst
[7, 8, 9]
>>> a
[7, 8, 9]
>>> a is lst
True

# You can also create a (shallow) copy of a list:
>>> b = lst[:]
>>> b
[7, 8, 9]
>>> b is lst
False

2018-05-29

# collections.Counter lets you find the most common
# elements in an iterable:

>>> import collections
>>> c = collections.Counter('helloworld')

>>> c
Counter({'l': 3, 'o': 2, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1})

>>> c.most_common(3)
[('l', 3), ('o', 2), ('e', 1)]

2018-06-06

# itertools.permutations() generates permutations 
# for an iterable. Time to brute-force those passwords ;-)

>>> import itertools
>>> for p in itertools.permutations('ABCD'):
...     print(p)

('A', 'B', 'C', 'D')
('A', 'B', 'D', 'C')
('A', 'C', 'B', 'D')
('A', 'C', 'D', 'B')
('A', 'D', 'B', 'C')
('A', 'D', 'C', 'B')
('B', 'A', 'C', 'D')
('B', 'A', 'D', 'C')
('B', 'C', 'A', 'D')
('B', 'C', 'D', 'A')
('B', 'D', 'A', 'C')
('B', 'D', 'C', 'A')
('C', 'A', 'B', 'D')
('C', 'A', 'D', 'B')
('C', 'B', 'A', 'D')
('C', 'B', 'D', 'A')
('C', 'D', 'A', 'B')
('C', 'D', 'B', 'A')
('D', 'A', 'B', 'C')
('D', 'A', 'C', 'B')
('D', 'B', 'A', 'C')
('D', 'B', 'C', 'A')
('D', 'C', 'A', 'B')
('D', 'C', 'B', 'A')

Comments